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EXACT SOLUTIONS AND NUMERICAL ANALYSIS OF THE PROBLEM OF AN INTENSE EXPLOSION 
IN CERTAIN IDEAL COMPRESSIBLE MEDIA* 

N.A. BELOV 

The well-known selfsimilar problem of an intense explosion in an ideal 
compressible medium possessing a certain arbitrariness in the form of 
the internal energy is considered. The problem was formulated by 
Sedov. The existence of the first two integrals reduces the problem to 
the study of the integrability of a single, first-order differential 
equation. 

We will show that even in the simplest case when the problem has 
planar symmetry, and the equation reduces, in the general case, to an 
Abel equation with functional coefficients which is not integrable in 
quadratures. A special case of its integrability is found, which 
enables us to write out the analytic solutions of the problem for a 
certain family of media including real and dust-containing gases (under 
the assumption that the phase parameters are in equilibrium). The 
results generalize the results obtained earlier /l-4/. All solutions 
obtained can be continued to the plane of symmetry, and their asymptotic 
behaviour near it is investigated. 

A numerical analysis of the problem is carried out for the same 
family of media for the cylindrical and spherical cases. Two new 
effects are found for disperse media such as a liquid with bubbles and a 
dusty gas (previously studied numerically in /5, 6/), namely the 
non-monotonic form of the velocity behind the shock wave, and the effect 
of incompressibility when the mixture contains a fairly small amount of 
gas. In the spherical case the limit solution of the problem, when the 
amount of gas is reduced, is represented by the well-known solution of 
the problem of an intense explosion in an incompressible fluid. 

I. We shall give a brief formulation of the problem (given in greater detail in /l, 2/). 
Let the internal energy density have the form 

e (P, P) = P(P (B)/PO> &! = PIP0 (f.1) 

where p and p are the pressure'and density, and cp is an arbitrary function. In.this case 
the problem is selfsimilar (two independent dimensional constants are the energy of the 
explosion, and p. is a constant with dimensions of density), 
g, the velocity 

and the dimensionless density 
f = v/z*' and the pressure h=p/(&zsz,‘*) satisfy the system of three first- 

order ordinary differential equations obtained from the equations of continuity, motion and 
conservation of entropy within the particle: 
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(h - f) g’/g - f’ - (v - 1) f/h = 0, Is’ - (3, - f) gf' - ‘/avfg = 0 (1.2) 

(A - f) (h’/h - dd In xldg) f v = 0. Y, (g) = q-1 exp 1 (&f’dg 

where x = zrz, is the dimensionless coordinate (a prime denotes differentiation with respect 
to h), the parameter v is equal to 1, 2, 3 for plane, cylindrical and spherical symmetry 
respectively, and Z, and t; are the coordinate and velocity of the (assumed) intense shock 
wave. From considerations of dimensions it follows that JS _ tWJW and t is the time, and 
this was utilized in (1.2). The following relations on the intense shock wave (h :- 1) serve 
as the boundary conditions for system (1.2): 

f, = 1 -g,/gs, ils = afs’ 2aqJ k,) = 1 -gl/&?s (1.3) 

where g1 is the initial density of the medium and the index s denotes the values of the 
variables on the wave. The last expression in (1.3) should be regarded as an equation in 
gs, (and since its right-hand side should be positive, the condition 0 <'p (A < Wg,) should 
also hold). 

In order to make the solution physically meaningful, we must require that the condition 
for there to be no sources at the centre of symmetry (explosion) must also holds 

f (0) = 0 (1.4) 

If we digress from determining the dimensional characteristics of the flow, then the 
boundary value Problem (1.2)-(1.4) will represent a mathematical formulation of the problem 
of an intense explosion in a medium with internal energy of the form (1.1). 

The existence of two algebraic first integrals of system (1.2), namely of adiabaticity 
and energy: 

hx-'g (h - f) A+’ = c, (1.5) 

Ihf - g (h - nclls + @)I J.v-' = c, 0.6) 

where C, and C, are found from (1.3); C.=O,vg enable us to simplify the investigation Of 
the problem of an intense explosion, and to pass to the problem of considering the Cauchy 
problem for a single first-order equation in the variables g and P=f/A.: 

d In g/dF = gcp (F - I)-’ (P I(v - 1) F + 11 + gq (F - l)[(v - 1) F + 

1 - '/*vl)(g'~ (F - i)(F - i - '/*Y) + gcpF (F - 1 - v) + 

V,vF (1 - kd&fg))-' 

F, = 1 - g,/&, &WP (6%) = 1 - 81/g, 

(1.7) 

(1.8) 

Condition (1.4) is verified after obtaining the solution of Problem (1.7), (1.8). Eq. 
(1.7), which we study with gcp as the unknown and with the function 'P(S) given, represents 
a Riccati equation and can be integrated in quadratures from p (B) and this, together with 
the use of first integrals, enables us (see /l/) to describe certain general properties of 
the behaviour of the solution of the problem with an arbitrary function 'p (g). The question 
of a straight-forward integration of (1.7) remains open. 

2. In order to study the integrability of Eq.(1.7), we shall reduce it to a more con- 
venient form. Let 

u = U(srp), w = iIF - 1 (2.1) 

Then Problem (1.7), (1.8) can be written in the form 

(2~ (II) + V) - w iv + (2 -v) w]) w-l(ul+ 1)-‘dw = vda + (vu’ - u [v + (2.2) 

2 (v -f 4) ~1 + w b + (2 + v) 1011 din g (2.3) 

mg = u& US = u (g,) = %W, --n) 

Knowing the particular solutions of Eq.(2.2), we can conclude that the solution of 
Problem (2.2), (2.3) must be contained within the "beaker" g >O, 0 d 20 4 u(s)* 

Let us now assume that g, W, u are independent variables. Then (2.a wiil be a Pfaff 
equation of not fully integrable type (see e.g. /7/ for details on Pfaff equations). The 
one-dimensional integral manifolds of this equation are described, in the space g, w, u, by 
the following system of algebraic equations: 

(u - wt)(w + 1) ZWWV _ ~99 (g). u - 1 - (1 + 2/v)w = -din B/d In g (2.4) 

where f3 is an arbitrary function of 9 (we can assume that system (2.4) represents a general 
"parametric" solution of Eq.(2.2) with parameter 0 (g)). 

In the case of plane symmetry (v=f), system (2.4) takes its simplest form. Eliminating 



w from (2.4), we can 
If on the other hand 

then the variable Y 

The formula 
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obtain a differential equation for 8 when the function u (9) is given. 

we take, instead of 8, 

y = (1 + rue)-"* (2.5) 

will satisfy the Abel equation 

dY/dr + Y (1 - Y)[(a + b)Y + al = 0 (2.6) 

T = In g, 2a = d In u/dz f U, 8= 3P (3.7) 

ID = 2UY/(1 + Y) (2.8) 

obtained from (2.5) and the first relation of (2.4), enables us to reformulate Conditions 

(2.3) thus: 

Two trivial solutions of Eq.(2.6), namely YGO, YFl, do not satisfy the first con- 

dition of (2.9). If we can find, for the given function ~(9) (or cp (B) I see (2.1)), the 

solution of the Problem (2.6), (2.9) in the form g= (Y),YE(O;l)r then we can also obtain 

the following parametric relations connecting h, h,f with Y: 

LB = 2C,& (1 - Y)Y-* (1 + y)-Stf + (1 + 2/(gcp))YP (2.10) 

h = Pep-‘Y (1 - I--’ (1 + y)*[l + (1 + 2/(gcp))u-’ 

f = 2. (1 + VI1 + (1 + ~~mnyl- 

from integrals (1.5), (1.6) and formulas f=kF (2-l), (2.8). 

3. We can easily find a simple example of the integrability of (2.6). Let 

CL= k8, k = conat (3.1) 

It is clear that in this case the variables in (2.6) are separable. By virtue of (2.7), 
relation (3.1) (which is a differential Bernoulli equation), defines a set of functions 

u = ((I + bg)-‘, a=6k+1, b=const (3.2) 

for which Eq.(2.6) can be integrated. 
The solution of Problem (2.6), (2.9) for the functions (3.2) depends on the constants 

a, b and gl, but in the present case we can write g1= * without loss of generality. A 
solution with a shock wave of the problem of an intense explosion may exist (see (1.3)) only 
when the conditions 

g*>l, u(g)>8 (3.3) 

restricting the values of a and b are imposed on the solution. Let us first consider the 
case of 0 = 0, where we have u = (bgp or q= b. The problem of an intense explosion in 
such a medium was studied earlier by numerical methods for Y= 3/l/. A solution of Problem 
(2.6), (2.9) of the form 

with the values 
with (2.10), an 
From Conditions 
to the plane of 

of the parameter Y lying within the half-interval I%; 1) yields, together 
exact parametric solution of the problem of an intense explosion at v=i. 
(3.3) it follows that 0 < b 2 Ita. The solution (3.4), (2.10) can be continued 
symmetry (Y=i) I and behaves in its neighbourhood as follows: - L - -fil" e, 

$=I-2,-&n (’ - Y)(zy)4 
(5Y- l)h (3.4) 

g - -(ln e)-1, h - I, f - I/e when e=i--Yei. 
Condition (1.4) holds. 

The extendibility of the solution implies that 

When discussing the case of 4i8, it is convenient to introduce new constants, namely 
y = 1 + l/a and B = -bla, in which case we have I = (7 - i)/(i - Bg) and ge = (1 - Bg)/(y - 1). From 
the conditions (3.3) and the general property of the solutions for arbitrary p(g) /l/, con- 
sisting of the fact that the density behind the shock wave cannot be everywhere qreater than 
the initial density, it follows that only two domains of the parameters 
considered, namely either 01 or (i--)/Z< B<i, or y<--i and 

~= 

I 

(y_7&i_B) (2Y+-~)(i-Y)r'(w-r) [+$ Y + *Jr , IVl>‘* 
3 

* _B (2Y)-"s(l - Y)'/. e=PV/(3Y)- 11, y=3 

(Y = (4 - 5Y)/I(V - 2)(3y - Ql). 

; and B-need be 
i<B<(l-y)/2. Let 

Y#2 (3.5) 



540 

I al A b 
I q 3 

a a.3 a! a 0‘5 *1 

Fig.1 

Fig.2 

a.1 

Fig.3 

The solution of Problem (2.6), (2.9) of the form 

g = @ (l + I?@)-1 (3.6) 

together with (2.10) yields, for y E I%; 3) ‘ an exact paraRetXiC SOhtiOn of the problem of 
an intense explosion for Iv[>l and Y=I~ continuable up to the plane of symmetry. The 
asymptotic behaviour of the solution near the plane of symmetry is identical, for y>i, with 
the well-known behaviour of the solution for a real gas at Y= i (the parameter Y can be 
eliminated) g- hl'(y-l), h - 1, f-h for A< 1, and for y< -1 g-i, h - 1, f -A(Y-‘)/Y, and the 
density g is equal to 1/b' when 1=0. 

Notes. lo. The internal energy of a disperse two-phase system in which one phase in 
incompressible and the other is a real gas, and the phases are in equilibrium with regard to 
velocities and temperatures, is given by the function gg,= (I-Bg)/(y-1) where y>l is the 

effective adiabatic index (less than that of the gas), and B is a constant equal, for &?I= 1, 
to the volume fraction of the incompressible phase before the shock wave (0~19~1). Examples 
of such media, which we shall call simply disperse media, are a dusty gas, a mixture of gas 
and liquid droplets, and a liquid containing bubbles. 

An attempt was made in 131 to solve the problem of an intense explosion in such a dis- 
perse medium (at O<B<i) using a variable transformation and starting from the known 
solution /2/ for a real gas (B= 0). The transformations proposed in /3/ were found to be 
excact only in the case of v= 1. 

A parametric solution for disperse media was given above for %J= 1, as well as three 

other solutions, (Y > 1, (1 - YG < B < 0; Y < --i and 1~ B < (1 - Q/Z, ‘p z b for 0 < b < 'i,) for 
the case when the parameters Y and B have no specific physical meaning. 

2'. The results obtained enable us to obtain an exact solution of the problem of an 
intense explosion at a plane boundary dividing two different ideal compressible media for 
each of which the exact solution is known. The distribution of the energy of the explosion 
between two half-spaces is found from the condition that the (dimensional) pressures are equa 
to each other at the boundary separating the two media. Only one exact solution was known 
earlier, namely the solution for the problem where the explosion occurs at the boundary 
between two real gases (such problems are discussed in greater detail in /Sj, Chapter 5). 
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4. Figs.l-3 show the exact solutions obtained above, as well as some results obtained 
numerically using the Runge-Kutta method for Problem (1.2)-(1.4) for all values of v, for 
the functions q= b and go= (i -Bg)/(y - 1). 

Fig.1 shows the exact solutions for Y=l for the non-disperse media, in the form of 
graphs showing the dependence of g/n (curve I), f (Z), and A (3)on L at b = 0.3 (a); y = -2, B = 1.2 

(b);Y= 5 and B= --1 (c). Numerical computations of the same versions at v=S; 3 have shown 
only an insignificant deformation of the graphs, but in the case of version b at v=3. a 
cavity of non-zero density was found (h(h)=0 for li< 0.17). 

A model of disperse media was studied by numerical methods before the publication of /3/, 
for v=l /5/ and v=2 /6/. Therefore we shall give below only those results of the 
numerical analysis which were not mentioned in the above papers. 

Fig.2 shows, for y= 1.3, graphs of relations f(k) for v=i(a), v=2 (b), v=3 (c), 
for various values of B(0; 0.3;O.s;O.S). We see the non-monotonic form of the function f(A) at 
v=2;3 for B>B,(B,z 0.2 at v = 3; B, z 0.3 for v= 2), and in the case of spherical 
symmetry this property is more pronounced. The non-monotonic form of the function f (5) has 
not been detected in /6/, since in that paper BdO.04. 

When the values of B are close to unity, the disperse medium behaves as an incompressible 
medium. This effect is shown for y= 1.3 and B=O.95 in Fig.3, where graphs are given 
showing the dependence of g, f, h on L for v = 1;2; 3. We note that in the cylindrical and 
spherical cases, segments of nearly constant density can be formed only when the velocity is 
sufficiently strongly non-monotonic. It can be shown /l/ that when v=3, the limit solution 
(B=i) for disperse media will be the well-known solution /2/ for an incompressible fluid with 
a cavity expanding from the centre of the explosion. 

The author thanks V.P. Korobeinikov for discussing the results. 
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